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The enantioselective allylation of aldehydes using a variety of b-amido functionalized allyltributylstann-
anes proceeded smoothly with good to high yields and enantioselectivities in the presence of 10 mol % of
a chiral catalytic complex prepared from In(OTf)3 and 2,6-bis[(S)-4-isopropyloxazolin-2-yl]pyridine {(S)-
i-Pr-pybox}, providing the corresponding chiral c-hydroxy amides.

� 2008 Elsevier Ltd. All rights reserved.
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Scheme 1. Diastereoselective allylation of aldehydes with b-amido allyltributyl-
stannanes 1 and the synthesis of a-methylene-c-butyrolactones 3.
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Scheme 2. Enantioselective allylation of aldehydes 5 with b-amido allyltributyl-
stannanes 4 catalyzed by MX3/(S)-i-Pr-pybox complexes.
Asymmetric allylation of aldehydes using various allyl-metal
reagents such as allylsilanes and allylstannanes is one of the most
useful methods for chiral carbon–carbon bond formation.1

Although a large number of methods have been developed, there
are, to the best of our knowledge, few examples of reactions using
allylstannanes with a b-amido function.2 Pioneering studies
developed by Tanaka et al.2a,b described Lewis acid mediated
stoichiometrically diastereoselective allylation between aldehydes
(RCHO) and optically active b-amido functionalized allyltributyl-
stannanes 1, furnishing the corresponding chiral c-hydroxy amides
2. These can be easily converted to a-methylene-c-butyrolactones
3 possessing a wide range of potent biological activities (Scheme
1).3

Recently, chiral Lewis acid complexes composed of metal tri-
flates M(OTf)3 and 2,6-bis(oxazolin-2-yl)pyridine (pybox) were
shown to be effective catalysts for the enantioselective allylation
of carbonyl groups to afford the corresponding homoallylic alco-
hols in excellent enantiomeric excesses.4 Herein, we report the first
example of catalytic enantioselective allylation between b-amido
functionalized allyltributylstannanes 4 and aldehydes 5 mediated
by MX3 and 2,6-bis[(S)-4-isopropyloxazolin-2-yl]pyridine {(S)-i-
Pr-pybox} complexes (Scheme 2).

We attempted to determine the optimum reaction conditions
for the enantioselective allylation of benzaldehyde 5a using
2-methylene-N-phenyl-2-[(tributylstannyl)methyl]propan-amide
ll rights reserved.

da).
4a.5 Among the various MX3/(S)-i-Pr-pybox complexes examined,
the reactions did not proceed under any conditions when InCl3,
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La(OTf)3, Sm(OTf)3, and Yb(OTf)3 were used even in the presence of
stoichiometric amounts of metal salts. Treatment of this reaction
with Sc(OTf)3, however, gave the desired c-hydroxy amide 6a but
in low yield and enantiomeric excess (ee). In contrast to these find-
ings, use of In(OTf)3 had a significant effect on the rate and stereo-
selectivity, and an expected enhancement was observed in the use
of only 30 mol % of this reagent, leading to 6a in high yield with
moderate enantioselectivity as shown in Table 1 (81%, 37% ee; en-
try 1). We next examined the catalytic amounts in order to study
the reactivity of the In(OTf)3/(S)-i-Pr-pybox complex (entries 1–
3). Improved yield and ee were finally obtained in reaction
employing 10 mol % of catalyst (96%, 63% ee, entry 3), although
the use of 5 mol % of catalyst as well as the case of the addition
of TMSCl (1.2 equiv)4a reversely decreased the enantiomeric ex-
cesses, respectively (entries 4 and 5). With these results in hand,
further experiments have been performed on the catalytic allyl-
ation using several N-substituted b-amido allyltributylstannanes
4b–f under the same reaction conditions. In the cases that N-aro-
matic reagents 4d–f were employed, the beneficial stereoselective
Table 1
Enantioselective allylation of 5a with allyltributylstannanes 4a–f catalyzed by In(OTf)3/(S)

 cat. In

C
H

O

+

4a-f 5a

SnBu3

R1HN O

Entry R1 In(OTf)3 (mol %) TMSCl (

1 Phenyl (4a) 30 —
2 Phenyl (4a) 20 —
3 Phenyl (4a) 10 —
4 Phenyl (4a) 10 1.2
5 Phenyl (4a) 5 —
6 C2H5 (4b) 10 —
7 c-C6H11 (4c) 10 —
8 biphenyl-3-yl (4d) 10 —
9 (3,5-Di-tert-butyl)phenyl (4e) 10 —

10 (4-tert-Butyl)phenyl (4f) 10 —

a All reactions employed 4 (1.0 equiv) and 5a (1.2 equiv) in the presence of activated
b See experimental procedure in Ref. 6.
c Isolated yield.
d Determined by chiral HPLC analysis using a Daicel Chiralpak IB column.
e See Ref. 7.
f Predicted absolute configuration on the basis of reaction mechanism and the sign o

Table 2
Enantioselective allylation of aldehydes 5a–h with 4f

cat.

4f 5a-h

SnBu3

H
N O

+ R2CHO
t-Bu

Entry R2CHO Time (h)

1 Isovaleraldehyde (5b) 20
2 Pivaldehyde (5c) 20
3 4-Nitrobenzaldehyde (5d) 20
4 4-Anisaldehyde (5e) 20
5 3-Chloroaldehyde (5f) 20
6 1-Naphthaldehyde (5g) 14
7 Benzaldehyde (5a) 16
8 4-Isopropylbenzaldehyde (5h) 20

a Isolated yield.
b Determined by chiral HPLC analysis using a Daicel Chiralpak IA, IB, or IC column.
c See Ref. 8.
d Predicted absolute configuration on the basis of reaction mechanism and the sign o
e See Ref. 7.
effect was found, providing the corresponding c-hydroxy amides
6d–f in satisfactory ees as well as good yields, respectively (entries
7–9). In particular, we were delighted to find that the reaction
using N-(4-tert-butylphenyl) allyltributylstannane 4f gave 6f with
the highest enantioselectivity (entry 9).

Encouraged by this success, we extended the scope of this
methodology employing different aldehydes 5a–h and the results
from our survey are summarized in Table 2. The characteristic fea-
tures of these reactions are as follows: (i) use of aliphatic alde-
hydes decreased the stereoselectivity as well as the reactivity
(entries 1 and 2); (ii) little effect of the substituents on the aro-
matic aldehyde was observed (entries 3–5); (iii) the reaction with
the large alkyl-substituent connected to the aromatic ring gave the
highest enantioselectivity (79% ee, entry 8).

Although the obvious reason for these results is not clarified at
present and the mechanistic research of the related reactions has
not been appeared to date,4 it should be considered that the steric
hindrance between the alkyl-substituent on aromatic aldehydes
employed and the isopropyl group of In(OTf)3/(S)-i-Pr-pybox
-i-Pr-pybox complexa,b

(OTf )3/(S)-i-Pr-pybox

H2Cl2, MS 4Å, rt

6a-f

R1HN O
OH

equiv) Time (h) Yieldc (%) eed (%) Configuration

16 81 (6a) 37 Se

4 72 (6a) 51 Se

16 96 (6a) 63 Se

21 85 (6a) 32 Se

4 41 (6a) 53 Se

24 78 (6b) 31 Sf

72 78 (6c) 39 Sf

16 74 (6d) 63 Sf

16 81 (6e) 70 Sf

24 78 (6f) 77 Sf

MS 4 Å (120 mg) in CH2Cl2 (0.2 M).

f the specific rotations of 6.

In(OTf )3/(S)-i-Pr-pybox

CH2Cl2, MS 4Å, rt

6f-m

H
N O

OH

R2t-Bu

Yielda (%) eeb (%) Configuration

45 (6g) 48 Rc

45 (6h) 58 Rd

91 (6i) 58 Sd

92 (6j) 59 Sd

90 (6k) 61 Sd

89 (6l) 74 Sd

78 (6f) 77 Se

94 (6m) 79 Sd

f the specific rotations of 6.
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Figure 1. Plausible transition structure model.
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complex plays an important role in this selectivity. Thus, we
postulate that the observed high degree of stereoselectivity in
these reactions may be attributed to the stronger chelating ability
of indium ion which coordinates with the amide moiety of the
organotin reagent and the oxygen atom of the aldehyde to organize
cyclic transition states A and B (Fig. 1). Model A would be preferred
over B in which the steric interaction between the stannyl group
and the aryl group (R2) of the aldehyde is minimized to occupy
the remotest positions each other. In addition, the allyltributyl-
stannane approaches the carbonyl si-face because the re-face is
shielded by the isopropyl substituent on the oxazoline ring of the
pybox ligand,9 leading to the (S)-adduct predominantly.

Furthermore, allylated products thus obtained were easily
converted to potentially useful a-methylene-c-butyrolactones,
respectively.3

In summary, we have demonstrated the first example of
catalytic enantioselective allylation of various aldehydes using
b-amido functionalized allyltributylstannanes with 10 mol % of
In(OTf)3/(S)-i-Pr-pybox complex, and found that the reactions
between N-aryl allyltributylstannanes and aromatic aldehydes
were effective to give high enantioselectivity.

This method possesses desirable advantages of being not only
catalytic and enantioselective in the allylation, but able to give
optically active a-methylene-c-butyrolactones directly without
employing chiral allylstannanes prepared through tedious elabora-
tion.2a,b Further work on a more detailed mechanism and effort to
expand the scope of synthetic applications are currently in pro-
gress and will be discussed elsewhere.
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